[1]
								Lun Ai, Johannes Langer, Stephen H. Muggleton, and Ute
									Schmid. 2023. Explanatory machine learning for sequential human teaching. Machine
										Learning 112, 10 (June 2023), 3591–3632.
									DOI:https://doi.org/10.1007/s10994-023-06351-8
							[2]
								Lena Bartel, Michaela Ochs, Tobias Hirmer, and Andreas
									Henrich. 2024. Design Principles for a Study Planning Assistant in Higher Education.
									In Proceedings of the 2024 Conference on Human Information Interaction and
										Retrieval (CHIIR ’24), Association for Computing Machinery, Sheffield,
									United Kingdom, 243–253. DOI:https://doi.org/10.1145/3627508.3638327
							[3]
								Marc Berges, Jonas Betzendahl, Abhishek Chugh, Michael
									Kohlhase, Dominic Lohr, and Dennis Müller. 2023. Learning Support Systems Based on
									Mathematical Knowledge Management. In Intelligent Computer Mathematics,
									Springer Nature Switzerland, Cham, 84–97.
							[4]
								Jonas Betzendahl, Michael Kohlhase, and Dennis Müller.
									2024. Guided Tours in ALeA. In Artificial Intelligence. ECAI 2023 International
										Workshops, Springer Nature Switzerland, Cham, 397–408.
							[5]
								Felix Böck, Dieter Landes, and Yvonne Sedelmaier. 2023.
									Improving Learning Motivation for Out-of-Favour Subjects. In CSEDU 2023 -
										Proceedings of the 15th International Conference on Computer Supported
										Education, SCITEPRESS – Science, 190–200.
							[6]
								Felix Böck, Dieter Landes, and Yvonne Sedelmaier. 2024.
									Learner Models: A Systematic Literature Research in Norms and Standards. In
									Proceedings of the 16th International Conference on Computer Supported
										Education, SCITEPRESS - Science, Angers, France, 187–196.
									DOI:https://doi.org/10.5220/0012556100003693
							[7]
								Markos Dimitsas and Jochen L. Leidner. 2023. Topic
									Segmentation of Educational Video Lectures Using Audio and Text. In Proceedings
										of the Workshop on AI for AI Learning held at ECAI 2023, Kraków, Poland, 30
										September 2023 (Communications in Computer and Information Science (CCIS)),
									Springer-Nature, Cham, Switzerland, 447–458.
									DOI:https://doi.org/https://doi.org/10.1007/978-3-031-50485-3_43
							[8]
								Felix Grelka, Theresa Kruse-Kurbach, and Marc Berges.
									2025. A Framework for Evaluating AI Powered Learning Platforms in K-12 and
									University CS Education. In 2025 IEEE Global Engineering Education Conference
										(EDUCON), IEEE, London, United Kingdom, 1–5.
									DOI:https://doi.org/10.1109/educon62633.2025.11016415
							[9]
								Felix Grelka, Dominic Lohr, and Marc Berges. 2025. ALeA :
									Advancing Personalized Learning with Adaptive Assistance and Semantic Annotation.
									Universitatsbibliothek Bamberg. DOI:https://doi.org/10.20378/irb-108296
							[10]
								T. Hirmer, M. Ochs, and A. Henrich. 2024. Baula – die
									digitale Studienplanungsassistentin an der Universität Bamberg. Zeitschrift für
										Hochschulentwicklung 19, 4 (2024), 15–36.
									DOI:https://doi.org/10.21240/zfhe/19-4/02
							[11]
								Tobias Hirmer, Michaela Ochs, and Andreas Henrich. 2023.
									Vertical Search Scenarios within a Digital Study Planning Assistant. In Lernen,
										Wissen, Daten, Analysen (LWDA) Conference Proceedings, Marburg, Germany, October
										9-11, 2023 (CEUR Workshop Proceedings), CEUR-WS.org, 239–246. Retrieved from
									https://ceur-ws.org/Vol-3630/LWDA2023-paper22.pdf
							[12]
								Tobias Hirmer, Michaela Ochs, Andreas Stöckl, and Adrian
									Völker. 2023. Nutzung von Studienverlaufsdaten im Kontext eines
									Studienplanungsassistenten. In Workshops der 21. Fachtagung Bildungstechnologien
										(DELFI). Gesellschaft für Informatik e.V., Bonn, 177–180.
									DOI:https://doi.org/10.18420/wsdelfi2023-51
							[13]
								Céline Hocquette, Johannes Langer, Andrew Cropper, and Ute
									Schmid. 2024. Can humans teach machines to code? Retrieved from
									https://arxiv.org/abs/2404.19397
							[14]
								Michael Kohlhase, Marc Berges, Jens Grubert, Andreas
									Henrich, Dieter Landes, Jochen L. Leidner, Florian Mittag, Daniela Nicklas, Ute
									Schmid, Yvonne Sedlmaier, Achim vom Ulbrich-Ende, and Diedrich Wolter. 2024. Project
									VoLL-KI – Learning from Learners. Künstliche Intellienz (2024).
									DOI:https://doi.org/10.1007/s13218-024-00846-9
							[15]
								Michael Kohlhase and Dennis Müller. 2022. System
									Description STEX3 – A LATEX-Based Ecosystem for Semantic/Active Mathematical
									Documents. In Intelligent Computer Mathematics, Springer International
									Publishing, Cham, 184–188. Retrieved from
									https://doi.org/10.1007/978-3-031-16681-5_13
							[16]
								Michael Kohlhase and Marcel Schütz. 2024. Reusing Learning
									Objects via Theory Morphisms. In Intelligent Computer Mathematics, Springer
									Nature Switzerland, Cham, 165–182. DOI:https://doi.org/10.1007/978-3-031-66997-2_10
								
							[17]
								Theresa Kruse, Dominic Lohr, Marc Berges, Michael
									Kohlhase, Halimeh Moghbeli, and Marcel Schütz. 2024. Term Extraction for Domain
									Modeling. Gesellschaft für Informatik e.V. DOI:https://doi.org/10.18420/delfi2024_33
								
							[18]
								Alexander Lehmann and Dieter Landes. 2023. Tackling
									Learning Obstacles in Learning Videos by Thematic Ad-hoc Recommendations. In
									ICL2023 - Proceedings of the 26th International Conference on Interactive
										Collaborative Learning, IGIP / IAEO, 1499–1506.
							[19]
								Jochen L. Leidner and Michael Reiche. 2023. Language-Model
									Assisted Learning How to Program? In Proceedings of the Workshop on AI for AI
										Learning held at ECAI 2023, Kraków, Poland, 30 September 2023
									(Communications in Computer and Information Science (CCIS)), Springer-Nature, Cham,
									Switzerland.
							[20]
								Dominic Lohr, Marc Berges, Abhishek Chugh, and Michael
									Striewe. 2024. Adaptive Learning Systems in Programming Education: A Prototype for
									Enhanced Formative Feedback. Gesellschaft für Informatik e.V.
									DOI:https://doi.org/10.18420/delfi2024_57
							[21]
								Dominic Lohr, Marc Berges, Michael Kohlhase, Dennis
									Müller, and Max Rapp. 2023. The Y-Model - Formalization of Computer Science Tasks in
									the Context of Adaptive Learning Systems. In 2023 IEEE 2nd German Education
										Conference (GECon), 1–6.
									DOI:https://doi.org/10.1109/GECon58119.2023.10295148
							[22]
								Dominic Lohr, Marc-Pascal Berges, Michael Kohlhase, and
									Florian Rabe. 2023. The Potential of Answer Classes in Large-scale Written
									Computer-Science Exams. In Hochschuldidaktik Informatik (HDI) 2023, 179–190.
									Retrieved from
									https://delfi-tagung.de/fileadmin/FG/BBI/user_upload/6400_HDI_2023_-_Tagungsband_-_Broschuere_-_Innenseiten_-_DIN_A4_-_RZ_WEB.pdf
								
							[23]
								Dennis Müller and Michael Kohlhase. 2022. Injecting Formal
									Mathematics Into LaTeX. In Intelligent Computer Mathematics, Springer
									International Publishing, Cham, 168–183.
							[24]
								Michaela Ochs, Tobias Hirmer, and Andreas Henrich. 2023.
									Concept and Possible Impacts of a Study Planning Assistant in Higher Education. In
									2023 International Symposium on Educational Technology (ISET), 161–165.
									DOI:https://doi.org/10.1109/ISET58841.2023.00039
							[25]
								Michaela Ochs, Tobias Hirmer, Katherina Past, and Andreas
									Henrich. 2023. Design-Focused Development of a Course Recommender System for Digital
									Study Planning. In New Trends in Database and Information Systems, Springer
									Nature Switzerland, Cham, 575–582.
							[26]
								Michael Reiche and Jochen L. Leidner. 2023. Bridging the
									Programming Skill Gap with ChatGPT: A Machine Learning Project with Business
									Students. In Proceedings of the Workshop on AI for AI Learning held at ECAI 2023,
										Kraków, Poland, 30 September 2023 (Communications in Computer and
									Information Science (CCIS)), Springer-Nature, Cham, Switzerland.
							[27]
								Ute Schmid and Katharina Weitz. 2022. Künstliche
									Intelligenz und Psychologie - Von Kognitiver Modellierung bis Erklärbarkeit. In
									Psychologie : eine Einführung in ihre Grundlagen und Anwendungsfelder (6.,
									überarbeitete Auflage), Astrid Schütz, Matthias Brand and Sabine Steins-Löber
									(eds.). Kohlhammer, Stuttgart, 219–231.
							[28]
								Anna Magdalena Thaler, Franziska Karin Paukner,
									Jonas-Dario Troles, and Ute Schmid. 2022. Individuelle Förderung von
									Programmierfertigkeiten im Studium am Beispiel von Intelligenten Tutor Systemen für
									SQL. In Scholarship of Teaching and Learning : Eine forschungsgeleitete
										Fundierung und Weiterentwicklung hochschul(fach)didaktischen Handelns, Nerea
									Vöing, Sabine Reisas and Maik Arnolds (eds.). Zentrum für Lehrentwicklung, TH Köln,
									Köln, 61–77. DOI:https://doi.org/10.57684/COS-986
							[29]
								Anna Thaler, Adrian Völker, Tanja Mitrovic, and Ute
									Schmid. 2022. Worked Examples as Application of Analogical Reasoning in
										Intelligent Tutoring and their Effects on SQL Competencies.
									Albert-Ludwigs-Universität Freiburg. DOI:https://doi.org/10.6094/UNIFR/229611